Subject: Leaving Certificate Maths Teacher: Mr Murphy Lesson 15: Calculus I

15.1 Learning Intentions

After this week's lesson you will be able to;

- Explain what is meant by differentiation
- Differentiate a function from first principles.
- Differentiate polynomials by rule.
- Differentiate products and quotients.
- Differentiate composite functions.

15.2 Specification

5.2 Calculus	 find first and second derivatives of linear, quadratic and cubic functions by rule associate derivatives with slopes and tangent lines apply differentiation to rates of change maxima and minima curve sketching 	 differentiate linear and quadratic functions from first principles differentiate the following functions polynomial exponential trigonometric rational powers inverse functions logarithms find the derivatives of sums, differences, products, quotients and compositions of functions of the above form

15.3 Chief Examiner's Report

В	8	26.6	53	8	Functions/rates of change
В	9	30.7	61	6	Functions/trigonometry/calculus

15.4 What is Differentiation?

To understand differentiation, we need to look at rates of change. If we have a linear constant rate of change then we can use this information to understand more about a particular function. From junior cycle we know a way of doing this (we also looked at this back in week 10) it is slope. We saw in the video that we cannot easily get the slope of a function that is non-linear, this is where differentiation comes in.

15.5 First Principles

What this refers to is the initial discovery regarding how to find the slope of a function at a given point.

We still retain the techniques from coordinate geometry; however, we have to do on very important thing... **ZOOM IN! (see video)**

The 5 steps involved in differentiation by first principles:

- i) Find f(x):
- ii) Find f(x+h):
- iii) Get f(x+h)-f(x) and simplify:
- iv) Divide by h (the gap between the two points):

Reduce h to almost 0 (find $\lim_{h \to 0} f(x)$):

15.6 Differentiation by rule

As first principles in quite time consuming, there are faster methods that have been developed. The first of this is the differentiating of a polynomial that is a sum/difference. The rule is:

If $y = x^n$, then $\frac{dy}{dx} = nx^{n-1}$, where $n \in \mathbb{N}$

Question:

If
$$y = x^2$$

 $\frac{dy}{dx} = 2x^{2-1}$
 $\frac{dy}{dx} = 2x$
If $y = 4x^3$

Question:

If $y = 4x^3$ $\frac{dy}{dx} = (3)4x^{3-1}$ $\frac{dy}{dx} = 12x^2$

Question:

If y = 3x

$$\frac{dy}{dx} = 3x^{1-1}$$

$$\frac{dy}{dx} = 3$$

15.7 Product Rule

The above rule works if our function is a polynomial that is a sum of terms. However, if our function is a product, then we have a slightly different rule:

y = (u)(v)

Then...

$$\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$$

Example:

If
$$y = (3x+2)(4x^2-5)$$
, find $\frac{dy}{dx}$

15.8 Quotient Rule

The function in question may also appear as a fraction (Quotient) in which case there are two options,

1) Use the Quotient rule:

If
$$y = \frac{u}{v}$$

Then...

 $\int y = \frac{u}{v}$

$$\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

2) Use the product rule with a small manipulation:

Rearrange to

$$y = (u)(v^{-1})$$

and then use the product rule.

Example:

If $y = \frac{x^2 - 9}{x + 3}$, find $\frac{dy}{dx}$

15.8 Quotient Rule

This is where we have a composite function to differentiate In other words, this is where there is more than one thing happening within the function to differentiate:

 $f(x) = [g(x)]^{index}$

Example:

 $y = (x^2 - 3)^4$

131

15.10 Recap of the Learning Intentions

After this week's lesson you will be able to;

- · Explain what is meant by differentiation
- Differentiate a function from first principles.
- Differentiate polynomials by rule.
- Differentiate products and quotients.
- Differentiate composite functions.

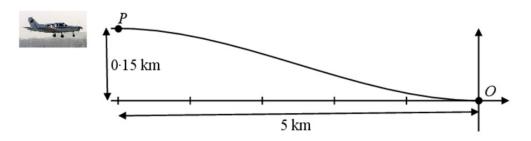
15.11 Homework Task

a. Differentiate the function $2x^2 - 3x - 6$ with respect to x from first principles.

Question 7

50 marks

A plane is flying horizontally at P at a height of 150 m above level ground when it begins its descent. P is 5 km, horizontally, from the point of touchdown 0. The plane lands horizontally at 0.



Taking *O* as the origin, (x, f(x)) approximately describes the path of the plane's descent wh $f(x) = 0.0024x^3 + 0.018x^2 + cx + d$, $-5 \le x \le 0$, and both x and f(x) are measured in km.

b. (ii) Find the value of f'(x), the derivative of f(x), when x=-4

15.8 Quotient Rule

- a. A motoring magazine collected data on cars on a particular stretch of road. Certain details on 800 cars were recorded.
 - i. The ages of the 800 cars were recorded. 174 of them were new (less than 1 year old). Find the 95% confidence interval for the proportion of new cars on this road. Give your answer correct to 4 significant figures.

$$\frac{174}{800} - 1.96\sqrt{\frac{\frac{174}{800}\left(1 - \frac{174}{800}\right)}{800}} \le p \le \frac{174}{800} + 1.96\sqrt{\frac{\frac{174}{800}\left(1 - \frac{174}{800}\right)}{800}}$$

$$0.1889 \le p \le 0.2461$$

$$18.89\% \le p \le 24.61\%$$

ii. The data on the speeds of these 800 vehicles is normally distributed with an average speed of 87.3 km per hour and a standard deviation of 12 km per hour. What proportion of cars on this stretch of road would you expect to find travelling at over 95 km per hour?

$$z = \frac{x - \bar{x}}{\sigma}$$

$$z = \frac{95 - 87.3}{12} = 0.64167$$

$$p(Z \le 0.64167) = 0.7389$$
$$p(z \ge 0.64) = 1 - 0.7389$$
$$= 0.2611 \text{ or } 26.11\%$$

When Conor rings Ciara's house, the probability that Ciara answers the phone is . 1/5

a. Conor rings Ciara's house once every day for 7 consecutive days. Find the probability that she will answer the phone on the 2nd, 4th, and 6th days but not on the other days.

$$\frac{4}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{1}{5} \times \frac{1}{5} \times \frac{4}{5} = \frac{256}{78125}$$
$$= 0.0032768$$

b. Find the probability that she will answer the phone for the 4th time on the 7th day.

$$\binom{6}{3} \left(\frac{1}{5}\right)^3 \left(\frac{4}{5}\right)^3 \left(\frac{1}{5}\right) = \frac{1280}{78125}$$
$$= 0.016384$$

c. Conor rings her house once every day for n days. Write, in terms of n, the probability that Ciara will answer the phone at least once.

$$1-\left(\frac{4}{5}\right)^n$$

